- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Allison, Hayley J. (1)
-
Blum, Lauren W. (1)
-
Drozdov, Alexander Y (1)
-
Drozdov, Alexander Y. (1)
-
Hartinger, Michael D. (1)
-
Hudson, Mary K. (1)
-
Jaynes, Allison N. (1)
-
Kondrashov, Dmitri (1)
-
Lejosne, Solène (1)
-
Ozeke, Louis (1)
-
Roussos, Elias (1)
-
Shprits, Yuri Y (1)
-
Strounine, Kirill (1)
-
Zhao, Hong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a reconstruction of radiation belt electron fluxes using data assimilation with low-Earth-orbiting Polar Orbiting Environmental Satellites (POES) measurements mapped to near equatorial regions. Such mapping is a challenging task and the appropriate methodology should be selected. To map POES measurements, we explore two machine learning methods: multivariate linear regression (MLR) and neural network (NN). The reconstructed flux is included in data assimilation with the Versatile Electron Radiation Belts (VERB) model and compared with Van Allen Probes and GOES observations. We demonstrate that data assimilation using MLR-based mapping provides a reasonably good agreement with observations. Furthermore, the data assimilation with the flux reconstructed by NN provides better performance in comparison to the data assimilation using flux reconstructed by MLR. However, the improvement by adding data assimilation is limited when compared to the purely NN model which by itself already has a high performance of predicting electron fluxes at high altitudes. In the case an optimized machine learning model is not possible, our results suggest that data assimilation can be beneficial for reconstructing outer belt electrons by correcting errors of a machine learning based LEO-to-MEO mapping and by providing physics-based extrapolation to the parameter space portion not included in the LEO-to-MEO mapping, such as at the GEO orbit in this study.more » « less
-
Lejosne, Solène; Allison, Hayley J.; Blum, Lauren W.; Drozdov, Alexander Y.; Hartinger, Michael D.; Hudson, Mary K.; Jaynes, Allison N.; Ozeke, Louis; Roussos, Elias; Zhao, Hong (, Frontiers in Astronomy and Space Sciences)Many spacecraft fly within or through a natural and variable particle accelerator powered by the coupling between the magnetosphere and the solar wind: the Earth’s radiation belts. Determining the dominant pathways to plasma energization is a central challenge for radiation belt science and space weather alike. Inward radial transport from an external source was originally thought to be the most important acceleration process occurring in the radiation belts. Yet, when modeling relied on a radial diffusion equation including electron lifetimes, notable discrepancies in model-observation comparisons highlighted a need for improvement. Works by Professor Richard M. Thorne and others showed that energetic (hundreds of keV) electrons interacting with whistler-mode chorus waves could be efficiently accelerated to very high energies. The same principles were soon transposed to understand radiation belt dynamics at Jupiter and Saturn. These results led to a paradigm shift in our understanding of radiation belt acceleration, supported by observations of a growing peak in the radial profile of the phase space density for the most energetic electrons of the Earth’s outer belt. Yet, quantifying the importance of local acceleration at the gyroscale, versus large-scale acceleration associated with radial transport, remains controversial due to various sources of uncertainty. The objective of this review is to provide context to understand the variety of challenges associated with differentiating between the two main radiation belt acceleration processes: radial transport and local acceleration. Challenges range from electron flux measurement analysis to radiation belt modeling based on a three-dimensional Fokker-Planck equation. We also provide recommendations to inform future research on radiation belt radial transport and local acceleration.more » « less
An official website of the United States government
